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ABSTRACT

General formulation of magnetic field expressions valid for multipoles of any order are
reported. Analytical expressions derived from the cylindrical model are shown. The
application on DAΦNE optics is described.

1.  Multipolar Magnetic Field General Expressions

The scalar magnetic potential generated by a quadrupolar field not depending on z is:

P x y G xy( , ) =

from which by applying the gradient operation the magnetic field components are derived:

B G yx =

B G xy =

For a quadrupolar field depending on z the condition of satisfying Maxwell equations in
three dimensions requires the dependence of the function G not only on z, but also on r:
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where G r z( , ) must be of the form:

G z r G z G z r( , ) ( ) ( ) ...= + +20 22
2

This formalism can be extended to any multipole of order m:
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Substituting sin mθ  with cosmθ  the multipole is skew. In particular with cos ,m mθ = 0
the solenoid is represented:

P r z G z G z rS S S( , ) ( ) ( ) ...= + +0 2
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The function G zm0 ( )  contains all the information on the magnetic field of the multipole,
since the G zmp( ) are from it derived:

G z
m

m p p

d G z

dz

G z
dG z

dz

m p
p

p

p
m

p

m p
m p

2

2
0

2

2 1
2

1
4

( ) ( )
!

( )! !

( )

( )
( )

= −
+

=+

and therefore the magnetic field of any multipole of order m written in cylindrical
coordinates is:
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For example the cylindrical components of a horizontal dipole (m  = 1) magnetic field are:
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from where the Cartesian components are:
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and the characteristic function is the vertical magnetic field on the axis:

G z B zy10 0 0( ) ( , , )=

For a quadrupole (m = 2) it is the gradient on the axis:
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while for a solenoid the longitudinal magnetic field is the first derivative with respect to z
of the magnetic scalar potential

G z B z
dG

dzS z
S

1
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The characteristic function of a real magnet is in principle measurable.

2.  Analytical Model (Cylindrical Model)

An analytical expression fitting the characteristic function of a magnet is a powerful tool
for any kind of analysis of the magnet characteristics and of its effects on the optics. This
is what is obtained with the so called cylindrical model1: the field near the axis of a
multipole created by a cylindrical sheet of currents has an analytical expression defined by
three parameters: the length of the cylinder, 2ZL , its radius R  and the circulating peak
current Ic . The analytical description of G zm0 ( )  and its derivatives is possible. In the
following table the characteristic functionsG zS0 ( ) for the solenoid, G z10 ( ) for the dipole
and G z20 ( ) for the quadrupole are shown, using the definition of the functions:
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Table I - Characteristic functions of some multipoles

Multipole m Gm0

Solenoid 0 B z G z
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A quality of the functions f k2 1+  is that their first and second derivatives can be expressed

through the same functions by the relationships:
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so all the higher order terms are linear combinations of f k2 1+  and g k2 1+ .

Once measured the magnet characteristic function, it is possible to fit it with one or a
superposition of CM, using as fitting parameters the three CM ones: length, radius and
current. From there on all field terms are analytically defined. The example of the KLOE2

detector solenoid is shown in the following figures and table. Three CM with different
fitting parameters (see Table II) describe the field on axis with good approximation. In
Fig. 1 the dots represent the measurement and the solid line the analytical fit. The
goodness of the fit is shown in Fig. 2 where the difference between the longitudinal
component of the magnetic field along z at two different values of r (r = 0., and r = 7.5
cm) is shown: this difference follows the second derivative of the field on axis:
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Table II:  CM fitting parameters for KLOE detector solenoid

ZL(m) R(m) I(A)

1 1.9707 0.1594  2.68 107

2 2.1175 0.1705 -0.26 107

3 0.7480 1.3163 -0.30 107
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Figure 1: Longitudinal magnetic field Figure 2: B r z B z r mz z( , ) ( , ) , .− =0 0 075
in KLOE detector solenoid in KLOE detector solenoid

3.  Effects on Linear Optics

Linear magnetic elements at the lowest approximation are usually described by the
rectangular model. In reality the characteristic function G zm0 ( )  is far from a step-wise
function (see Fig. 3). A more realistic description is obtained by ‘slicing’ the
characteristic function, either measured or analytically described by the CM, into a
reasonable number of intervals3, each of them described by a rectangular model matrix
(see Fig. 4). The product of all these matrices represents the total matrix.

        
Figure 3: Rectangular model Figure 4: Sliced computation

and measured Gm0 of the measured Gm0



In the case of a quadrupole, the final matrix can be written again as a quadrupole like
matrix, in which the two characteristic parameters (length and gradient) are modified
differently for the two planes; the quadrupole needs therefore four parameters. The
differences between the rectangular model and the real  one are of course related to the
G20

 behaviour, which is strongly correlated to the ratio R ZL/ . These differences are
consequence of the linear fringe field and are totally different from the non linear fringing
field effects coming from the upper terms G z nmn( ), >( )0 .
The linear fringing field lowers the gradient in the focused plane and make it stronger in
the defocused one. It is straightforward, by applying:

∆ ∆Q KL= 1
4π

β

to show that the total effect is a negative tune shift. In fact in the plane where the
quadrupole focuses the value of |K| decreases and the corresponding ∆Q is negative; in
the plane where the quadrupole defocuses the value of |K| increases and again ∆Q is
negative. The effect is of course stronger in the plane with higher chromaticity. For
example in the DAΦNE main rings arcs, which contain two different kinds of
quadrupoles, the value of ∆Q is about 0.01 (H), 0.02 (V).
For a solenoid, whose matrix can be written as the product of a rotation matrix and a
focusing one4 the method can be equally applied to the focusing matrix, while the rotation
matrix remains unchanged.

4.  DAΦNE Interaction Regions

In the DAΦNE Interaction Regions the magnetic field is a superposition of quadrupole
and solenoid fields (see Fig. 5).
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Figure 5: KLOE half IR. Behaviour of low beta quadrupole gradients
and longitudinal magnetic fields of detector and compensator.



The solenoidal compensation is done applying the Rotating Frame Method4, in which the
quadrupoles are tilted following the rotation of the transverse plane introduced by the
solenoids.
The field components of a quadrupole tilted by an angle θT are:
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Beams travel off-axis in the IRs since they cross with a tunable horizontal angle θcross.
Particle trajectories are computed by integrating the equations of motion along the IR. The
linear jacobian around the trajectory on axis is in agreement with the linear IR transport
matrix computed with the sliced computation. Information about phase advance and
optical functions at the IR ends are deduced from the jacobian for the different crossing
angles. For the nominal optical parameters at the IP (βx = 4.5 m, βy = 4.5 cm), as θcross

increases the phase advance along the IR increases, especially in the vertical plane, this
because around the off axis trajectory quadrupoles add an alternate bending action, like a
wiggler, giving vertical focusing (see fig.6). In the presence of solenoids this focusing
acts in the plane perpendicular to the trajectory plane point by point. At the IR end, where
the normal modes become horizontal and vertical because of the RFM method, the
increase in phase advance appears in the vertical plane.
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Figure 6: Tune shift with crossing angle in DAΦNE optics



The R.F.M. applied on axis is exactly valid off-axis only in the linear approximation. The
four parameters used for decoupling the motion between the IP and the IR end4, i.e. the
three quadrupole tilting angles and the integral of the longitudinal magnetic field on the
compensator solenoid, depend in principle on the crossing angle. Using the linear terms
of the jacobian computed around the trajectory, it is possible to readjust the values of the
decoupling parameters by minimizing the non diagonal elements of the jacobian. The
differences between the decoupling parameters with θcross in the nominal range have
resulted smaller than the alignment tolerances.

References

1. M. Bassetti, C. Biscari, Analytical Formulae for Magnetic Multipoles, Particle
Accelerators, 1996, Vol.52, pp.221-250.

2. The KLOE Collaboration, The KLOE Detector, Technical Proposal, LNF-93/002.

3. C. Biscari, Quadrupole modelling, DAΦNE Technical Note, L-23 (1996).

4. M. Bassetti, M.E. Biagini, C. Biscari, Solenoidal Field Compensation, these
proceedings.


